
Portlet Technology Research Report
for

Excellus

Version 2.0
Prepared by Kangaroo Software

Thursday, May 20, 2004
Table of Contents

iiTable of Contents

vRevision History

11
Introduction

11.1
Background

11.2
Goals

32
Overview

32.1
What are Portals?

32.1.1
Portal Concept

32.1.2
Portlets

Error! Bookmark not defined.2.1.3
Portlet Containers

Error! Bookmark not defined.2.1.4
Deployment

42.2
Lifecycle

42.3
Modes

52.4
States

63
Portlet API

63.1
Portlet Basics

63.1.1
Portlet

63.1.2
PortletAdapter

63.1.3
PortletRequest

73.1.4
PortletResponse

73.1.5
PortletSession

73.1.6
PortletConfig

83.1.7
PortletSettings

83.1.8
PortletApplicationSettings

83.1.9
PortletData

83.1.10
Listeners

8
PortletSessionListener

8
PortletPageListener

8
PortletTitleListener

83.1.11
Portlet Window

93.1.12
User Information

93.1.13
Portal Context

Error! Bookmark not defined.3.2
Advanced Portlet Topics

104
Configuration

104.1
Server Requirements

104.2
Server Specifications

104.3
Client Specifications

104.4
Installation

114.4.1
Server Installation

114.4.2
Server Installation Issues

114.4.3
Client Installation

124.4.4
Client Installation Issues

135
Detailed Objectives

146
Inter-Portlet Communication

146.1
1–way Communication – Prototype Member Page

166.2
2–way Communication – Prototype Claims Page

186.3
3-way Communication – Claims Page (Iteration 3)

196.4
Summary of Inter-Portlet Communication

217
Implementing Family of Portlets

248
Personalization

248.1
High-Level Details

248.1.1
Introduction

258.1.2
Selecting a Personalization Technology

268.1.3
Summary

278.1.4
Considerations

278.2
Personalization Technical Details

288.2.1
Personalization Components

319
Customization

319.1
Introduction:

329.2
Layout:

339.3
Themes and Skins:

359.4
Portlet User Interface Limitations

3610
Single Sign-On (SSO)

3610.1
Summary

3710.2
Design considerations

3710.2.1
Web Single Sign-On pattern

3710.2.2
Extended Single Sign-On pattern

3810.2.3
Credential Vault Design

3810.3
Authentication Models

3810.3.1
Homogeneous application servers

3910.3.2
Heterogeneous application servers

3910.4
Extended SSO Runtime Patterns

3910.4.1
Credential Propagation pattern

4010.4.2
Central Authorization Service pattern

4010.5
Approaches to Achieve SSO

4010.6
Extending the Security Realm

4010.6.1
LTPA Authentication

4110.6.2
External Security Manager

4110.6.3
Credential vault

4110.6.4
Credential vault PortletService

4210.7
SSO Prototype

4511
LDAP Connectivity

4511.1
Introduction

4511.2
LDAP Configuration

4511.2.1
Basic Connections

4511.2.2
Connections with SSL

4611.3
Testing LDAP Connections

4712
Learning Curve

4712.1
Prerequisite Knowledge

4712.1.1
Java and Object Oriented Programming (OOP)

4712.1.2
Java 2 Platform, Enterprise Edition (J2EE)

4812.1.3
Prerequisite Resources

4912.2
Conceptual Understanding

5012.3
Required Resources

5012.3.1
Staffing

5012.3.2
Literature Availability

5112.3.3
Software Requirements

5112.4
Development

5112.4.1
Portlet Development

5112.4.2
Portlet Deployment

5212.5
Metrics

5212.5.1
Background Knowledge

5212.5.2
Phase 2 Metrics

5413
Tutorials

5413.1
Basic Portlet Creation with Intercommunication Capabilities

5413.1.1
Creating Portlets using WebSphere Application Developer 5.1

5613.1.2
Creating Portlets Manually (The Hard Way)

5713.2
Deploying Portlets using WebSphere Application Developer 5.1

59Appendix A: Reference Information

Revision History

	Name
	Date
	Reason For Changes
	Version

	Jonathan Peffer
	1/26/2004
	Document creation; initial template setup
	1.0

	Jonathan Peffer
	2/11/2004
	Insertion of Introduction, Overview, and Tutorial sections
	1.0

	Jonathan Peffer
	2/12/2004
	Insertion of the API section
	1.0

	Jonathan Peffer
	2/13/2004
	Insertion and editing of the WebSphere Client/Server section
	1.0

	Jon Ferry
	2/14/2004
	Added diagrams wherever necessary. Corrected grammatical errors.
	1.0

	Jon Ferry
	2/15/2004
	Corrections made in response to inspection of the document.
	1.0

	Jon Ferry
	2/16/2004
	Additional changes made due to further inspection.
	1.0

	Christopher Helmeset
	5/17/2004
	Phase One Corrections
	2.0

	Team
	5/18/2004
	Added Phase 2 research findings
	2.0

	Team
	5/19/2004
	Finalized document
	2.0

1 Introduction

This goal of this document is to summarize the knowledge gained from our exploration of Portlet development using WebSphere, for the benefit of Excellus staff. This is work-in-progress, hence some sections have not yet been completed. We feel that at this point, all basic information to get started developing Portlets is contained in this document.

1.1 Background

Currently, Excellus employs over 450 customer service representatives who are responsible for handling approximately 30,000 thousand calls a day from some of its 2.1 million subscribers. All representatives operate on computers equipped with TIGRESS, a Visual Basic 6 (VB6) program developed by Excellus, to retrieve customer information and manage subscriber transactions. Over time Excellus has witnessed a growth not only in terms of employees but also in terms of clients. This growth places large demands on the current system implementation, which is being upgraded continually to meet these demands. It still works well, but the maintenance work is becoming increasingly difficult and time-consuming, particular because the implementation technology is antiquated by today’s standards. In order to achieve a balance between performance, reliability, security, and cost, the need arises for a system, which is flexible enough to adapt to the current demands of the company.

The proposed plan for replacing the TIGRESS and similar workflow technologies is an architecture based on JAVA/J2EE technology, with an expressed interest in a Portal based solution. The motivation behind a Portal solution arises from the multiple platforms, which are currently utilized at the companies, which have formed the company known as Excellus and the inherent similarities between the access of subscriber information and claims.

1.2 Goals

The goal of the RIT and Excellus senior design partnership is to research and provide a proof-of-concept solution based on IBM WebSphere Portal technology in the top layer as a replacement solution for TIGRESS, informally known as jTIGRESS. The deliverables also includes this study report on Portlet technology and the development of Portlets using the WebSphere toolkit, to facilitate future Portlet development at Excellus.

Essentially, the ultimate goal of the RIT and Excellus partnership is to answer the question: Is Portal technology a feasible solution for the new jTIGRESS application? To answer this general question, we must look into the specifics of Portal technology including the concepts of inter-Portlet communication and role-based interface customization using authentication information and the use of external LDAP authentication.

· Inter-Portlet communication is the process of passing data such as messages and objects from one Portlet to another Portlet to provide feedback to the user.

· User based roles is the concept of hiding and showing data (Portlets) depending on the privileges of the user. User information for TIGRESS system is currently stored in an LDAP database. This database should also be used by the new jTIGRESS solution, rather than the authentication database built into WebSphere’s Portal toolkit.

Phase 2 objectives can be found in the Detailed Objectives section below.

2 Overview

The following section will provide a brief background to those with no prior knowledge of Portal technology. It will discuss the concepts of Portals and Portlets according to Java Specification Request 168 and define the Portlet lifecycle, modes, and states. Much of this content has been gathered from documentation readily available on the web. If you have any questions or would like to explore these areas further, see the Reference Information section at the end of this document.

2.1 What are Portals?

2.1.1 Portal Concept

The growing concern for modular web-based applications has seen an emergence of “Portals”. A Portal provides the data presentation layer to information systems with functionality such as personalization, the ability to remember and configure a user’s individual customization, and single sign-on, allowing a user to sign-on once and have their content and settings displayed throughout the Portal. Contained in a Portal are many sets of Portlets, which handle different application functionality

2.1.2 Portlets

A Portlet is a Java-based Web application, which can be “plugged in” to a Portal. Portlets are usually not used as a stand-alone solution but rely on the data of other Portlets in the Portal to govern content. Users interact with these components on a request/response basis implemented by the Portal. That is, when the user makes a request, the Portal will respond with some form of feedback, such as updating a Portlet’s content.

Original Portlet APIs were vendor specific, leading to compatibility problems for application providers, Portal customers, and Portal server vendors. Java Specification Request (JSR) 168 was drafted to define a standard Portlet Specification to solve these compatibility issues and provide interoperability between Portlets and Portals. The specific goals of JSR 168 are as follows:

· Define the runtime environment (Portlet container) for Portlets

· Define the API between Portlet container and Portlets

· Provide mechanisms to store transient and persistent data for Portlets

· Provide a mechanism that allows Portlets to include Servlets and JavaServer Pages (JSP)

· Define a packaging of Portlets to allow easy deployment

· Allow binary Portlet portability among JSR 168 Portals

· Run JSR 168 Portlets as remote Portlets using the Web Services for Remote Portlets (WSRP) protocol

It should be noted that the IBM Portal API implementation does differ from the JSR 168 implementation. Our documentation describes the IBM version which closely follows the JSR 168 specification. For more information about the similarities and differences of the two APIs, see the Reference Information section at the end of this document.

2.2 Lifecycle

The lifecycle of a Portlet consists of three stages. The first is the initialization stage when the Portlet is created and available for use. The second stage is the handling of requests when events and feedback are being communicated to and from the Portlet. The final stage is when the Portlet is destroyed and no longer available for use.

2.3 Modes

Portlet modes are used to change the Portlet’s appearance to the user. There are three different types of Portlet modes: required modes, optional modes, and vendor specific modes. The first two are described in more detail below. For information on vendor specific modes, see vendor documentation.

Required modes

· View – The standard user interface for the Portlet.

· Help – displays a help screen to the user explaining the Portlet’s goal and functionality.

· Edit – Provides a page for users to change Portlet settings. For example, a stock statistics Portlet might allow editing of a set of ticker symbols.

Optional modes

· About – offers a brief description of the Portlet.

· Config – allows the administrator to change the Portlet settings.

· Edit – allows the administrator to change the preset edit options.

· Preview – show’s a preview of the Portlet

· Print – offers a “printer-friendly” view of the Portlet.

2.4 States

Different from Portlet modes, which change the functionality of the Portlet, Portlet states allow changes of the Portlet with respect to the WebPage itself. There are three different Portlet states:

· Normal – Default size for the Portlet application.

· Maximized – Increased size for the Portlet to allow full view of information.

· Minimized – Displays only the title bar of the Portlet to increase screen real estate.

3 Portlet API

This section contains a general description of the Portlet API, including important objects that are used during the Portlet’s lifecycle. For information on the specific functions and classes of the API, see the Reference Information at the end of this document.

3.1 Portlet Basics

3.1.1 Portlet

The abstract Portlet class is the central abstraction of the Portlet API. All Portlets extend this abstract class by extending one of its subclasses. PortletAdapter is a direct subclass.

The Portal always instantiates only a single instance of the Portlet and this instance is shared among all users, in the same manner a Servlet is shared among all users of an application server. After constructing the Portlet and before the Portlet is accessed for the first time, the concrete Portlet is initialized with the PortletSettings.
The Portal calls the service() method when the Portlet is required to render its content. During the life cycle of the Portlet, the service() method is typically called many times. For each Portlet on the page, the service() method is not called in a guaranteed order and may even be called in a different order for each request.

3.1.2 PortletAdapter

The PortletAdapter provides a default implementation for Portlet. Direct implementation of the abstract Portlet is not recommended. A Portlet should be derived from the concrete class, PortletAdapter, or from any concrete class which implements the abstract class, Portlet. When analyzing this situation, it becomes apparent that maintenance issues arise when a Portlet derives from the abstract Portlet class itself, since changes to Portlet would require a change to all Portlets deriving from the abstract Portlet. Essentially this is a warning and those who are implementing Portlets should ensure their Portlets derive from a concrete Portlet.
Concrete Portlet variables differ from Java instance variables, since they are bound to the Portlet class or non-concrete Portlet. PortletAdapter provides methods to work with concrete Portlet variables.

3.1.3 PortletRequest

This object is passed to the Portlet, providing the following information regarding the request:

· Attributes – Name/value pairs, which are kept for the scope of the request. The Portlet manages (gets/sets) this data.

· Parameters – Name/value pairs sent to the Portlet in a query string. For example, form elements send parameters to the Portlet. The Portlet can only read this data (gets/no sets).

· Client – Contains information about the user agent of the client.

· User Data – Stored data that is specific to the user, which does not expire.

· Session – User specific data to the session, which will expire at the end of the user’s session.

· Portlet Settings - Contains concrete Portlet settings. That is, settings created by the administrator for all users.

· Mode – The current or previous mode of the Portlet. For more information on modes, see Overview section above.

· ModeModifier – Allows editing of the Portlet’s previous, current, or requested mode. For more information on modes, see Overview section above.
· Portlet Window - The current state of the Portlet. For more information on states, see Overview section above.
3.1.4 PortletResponse

The PortletResponse object is passed from the Portlet to the user. It contains methods for creating the Portlet Uniform Resource Identifier (URI). The Portlet URI points to the Portlet instance and can contain Portlet-specific parameters and attaching actions. Actions are Portlet-specific activities that need to be performed as result of the incoming request. For example, when a user is entering data in the Portlet’s edit mode and selects a “Save” button, the Portlet must process the posted data before the next markup is generated. This can be achieved by adding a "Save" action to the URI that represents the "Save" button.

3.1.5 PortletSession

The PortletSession contains user specific data for the concrete Portlet, which determines the Portlet user instance. The PortletSession is created when the Portlet is initialized and obtained using the getPortletSession() method (available from the PortletRequest). The method returns the current session or, if there is no current session and the given parameter “create” is true, it creates and returns a new session.

3.1.6 PortletConfig

The PortletConfig holds initial configuration information for the non-concrete Portlet and the Portlet class. This configuration is valid for all concrete Portlets derived from the Portlet. This information is set by the Portlet developer and is read-only and cannot be changed by the Portlet.

3.1.7 PortletSettings

The PortletSettings provides the dynamic configuration for the concrete Portal instance. This configuration is valid for all instances of the concrete Portal. The Portal administrator normally maintains this information. The configuration is read-only and can only be written by the Portlet when in configure mode.

3.1.8 PortletApplicationSettings

The PortletApplicationSettings object dynamic configuration for the concrete Portlet application. The Portlet application information is shared by all concrete Portlets in the application. The Portal administrator normally maintains this information. The configuration is read-only and can only be written by the Portlet when in configure mode.

3.1.9 PortletData

The PortletData holds data for the concrete Portlet instance. There is one concrete Portlet instance for each occurrence of a Portlet on the page. The PortletData contains user-specific or group-specific data dependant upon the page type.

3.1.10 Listeners

The Portlet API adds functionality through the implementation of listeners in the Portlet itself.
· PortletSessionListener

The PortletSessionListener allows Portlets to recognize the beginning and end of a user Portlet instance and allows the Portlet to be updated accordingly.
· PortletPageListener

Since Portlets have no control over the order in which the output from all the Portlets are written to the page, the PortletPageListener allows a Portlet to insert markup at the beginning or end of a page.
· PortletTitleListener

The PortletTitleListener allows for dynamic changes of the title displayed in the title bar depending on condition or user input. If not implemented the title bar will display a default setting for the Portlet.

3.1.11 Portlet Window

The PortletWindow represents the window that encloses a Portlet. For example, on an HTML page, the Portlet window can typically be rendered as a table cell. The Portlet window can send events on manipulation of its various window controls, like when the user clicks minimize or close. The Portlet, in turn, can interrogate the window about its current visibility state. For example, a Portlet may render its content differently depending on whether its window is maximized or not.

3.1.12 User Information

The User class represents the users of the Portal. The User class contains methods for accessing attributes that make up the user profile, such as the user's full name or the username. The User class abstracts the underlying physical implementation of the one or more data stores, which actually hold the user information. This class and several others represent the Portal server's API to the user subsystem in Member Services. The getUser() method is available from the PortletRequest and PortletSession objects.
3.1.13 Portal Context

The PortletContext interface defines a Portlet’s view of the Portlet container in which each Portlet is running. The PortletContext also allows a Portlet to access resources available to it. For example, using the context, a Portlet can access the Portlet log, access context parameters common to all Portlets within the Portlet application, obtain URL references to resources, or access Portlet services.

Portlets can write message and trace information to log files. The Portlet container maintains the log. The log files help the Portal administrator investigate Portlet errors and special conditions and help the Portlet developer test and debug Portlets. The Portlet API provides the PortletLog class, which has methods to write message and trace information to the logs. Since logging operations are expensive, PortletLog provides methods to determine if logging is enabled for a given level.
4 Configuration

4.1 Server Requirements

The WebSphere Portal Server is a rather memory intensive application requiring a minimum of 1024Mb of RAM and 2Gb of free hard disk space. The WebSphere Studio Application Developer on client machines also requires a significant amount of hard disk space with a minimum of 1.3Gb of open hard disk space required for installation.

4.2 Server Specifications

· Intel Pentium 4 running at 1.8GHz (Intel Pentium 800MHz minimum)

· 1024Mb of RAM (1024Mb minimum)

· Microsoft Windows 2000 Server Edition, Service Pack 4

· IBM WebSphere Application Server Enterprise Edition, V.5.0

· IBM WebSphere Portal Server Express, V.5.0

· IBM Universal Database V.8.1 (DB2)

4.3 Client Specifications

· Intel Pentium 4 running at 1.8GHz (Intel Pentium 2 minimum)

· 768Mb of RAM (768Mb minimum)

· Microsoft Windows XP Professional, Service Pack 1

· IBM WebSphere Studio Application Developer, V.5.1

· IBM WebSphere Portal Toolkit, V.5.0.2

4.4 Installation

The following sections describe the basic installations of the WebSphere software. If you encounter any problems installing the software, see the Reference Information section at the end of this document.

[image: image1.emf]Websphere Application Server

Webspere Portal Server

Websphere Studio Application Developer

Websphere Portal Toolkit

Database(s)

LDAP

Accesses

Accesses

Deployment

4.4.1 Server Installation

Installation processes for the server and client machines were rather straightforward. Server installations were performed by executing the IBM WebSphere Portal V.5.0 setup program. The setup program installed both the WebSphere Application Server and the WebSphere Portal Server. Default path, administrator username, and password settings were used while installing the Portal server.

4.4.2 Server Installation Issues

The initial installation process of the WebSphere Portal server setup program attempted to use an existing application server (Application Server Express V.5), which was originally supplied. The installation program failed to recognize the application server, due to this apparent conflict. This issue prompted the un-installation of the original application server, followed by a full installation of both WebSphere Application Server and WebSphere Portal Server.

4.4.3 Client Installation

Client machine installs were performed by executing the installation programs for WebSphere Studio Application Developer V.5.1 and WebSphere Portal Toolkit V.5.0.2, in this respective order. The Portal Toolkit installation contains options for inclusion of a remote debugging environment on the server and a local debugging environment on the client machine.

4.4.4 Client Installation Issues

The initial plan was to install both environments, but the local environment was not installed since four eFix files were required, but not available. The documentation regarding these files is all but nonexistent on IBM’s website and installation guides from IBM’s website were not correct in respect to the versions of WebSphere that we are using. Currently we are still trying to resolve this issue.

5 Detailed Objectives

The team addressed the following areas in detail during the second phase of the project:
Interface design

General concern: to what extent can Portlet interfaces emulate the look and feel of popular PC interfaces?

· Capabilities and limitations

· Look and feel; customization
Application design

General concern: to what extent can a Portlet-based application be designed without concern for limitations imposed by inter-Portlet communications?

· Inter-Portlet communication

Portlet families

General concern: to what extent can families of Portlets be created from foundation Portlets?
· Limitations/constraints

· Effort to develop

WebSphere/Portal capabilities and limitations
General concern: is it feasible to base an enterprise-wide authentication strategy on WebSphere/Portal?

· Single Sign-On capability

· LDAP Extensibility
The following sections detail the findings in each of these areas.

6 Inter-Portlet Communication

6.1 1–way Communication – Prototype Member Page

The member’s page allows CSR users to login to the system and view information about BlueCross BlueShield subscribers. Below we see a view of the Members page with 2 Portlets: Member ID, which accepts a nine digit ID (‘123456789’ or ‘111111111’ for our testing), and Member Info, which displays the member information.

[image: image2.png]0so0 plo ~=loix|

P e s 3
Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

ackhess [&] htpi129.21.207.951905 1 fwpsimyportal/utjo.srfLoggedin ERENE
e vl Aammisrstn 7 £t mofle ¥ Log ow 2]

Mew Psge EditPage Assian Peimnissio,

[=)

Entar 3 member ID:

| ——

[tember infs
Please enter 3 valid member ID above. Hashiap contains 123456789’ and 111111111 IDs,

NI

Internet

By typing in a member ID in the Member Info Portlet and pressing the ‘Lookup’ button, the Member Info Portlet is automatically updated to display the information:

[image: image3.png]0so0 plo ~=loix|

PTrr——— 3

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Adress [] hitp129.21.207.951308 wpsfmyportal{Ltfo]_5.7_0_Af7_0_55.cndac].arjsa prototype MemberlDacton.cf6_0 LTj.ce? v] (£ G0 | Links >

[e iy Favories

[=)

Entar 3 member ID:

[[teokw

[tember infs

Member Information for Doe, Jane:

First Name: Jane
Middls Name: Mary
Lazt Nama: Dos.

Address

Strest: 6 House Rd.
City: Rochester

Sester nY
Zins 14620
Dependents
[elation —[start[End [ftatus [Birthday [Aou PCP Name (PGP Subprogram [Aitemata peP
ol [osssa12595 [o3/012005 subs request[psrzoisrs ee [iare ¥ Direct Conract Mad ot roung
I~
[Epore [[[@meme 7

This occurs through the use of Portlet message passing and storing to the session’s user object. Portlet message passing works by allowing one Portlet to listen for events on the page, here the Member ID Portlet listens for the ‘Lookup’ button to be pressed. Once an event occurs, information about the event is sent to the Portlet’s actionPerformed() method. In this method, logic can be done to process the information before a message is sent via the send() method.

Sending of the data can be done to all Portlets as a broadcast or to a specific Portlet. In this case we wish to send the information to the Member Info Portlet on the same page. The Member Info Portlet is set up as a MessageListener, so when the Member ID Portlet calls the sent() command, Member Info Portlet will receive the data. Here when a member ID is entered and ‘Lookup’ is pressed, the ID is sent to the Member Info Portlet retrieves information from a data source about the ID and displays it on screen.

[image: image4.emf]Member ID

Portlet

(ActionListener)

Member Info

Portlet

(MessageListener)

Sends ID

‘Lookup’

Pressed

Sends Form Info.

To display data from the Portlet (a JAVA class file) to the webpage (a JSP file), the session’s User object is used. This object stores data about the specific user that is logged into the system. For the Member page, the Member ID is stored in the User object and can be retrieved at any point from JAVA or JSP files. This data is only stored for the life of the session. So, when a user logs off of the system, the information stored in the User object is destroyed.

Most of the time developing inter-Portlet communication was spent figuring out how to deliver information for the Portlet to the jsp. There are several different objects encoded into the PortletRequest object. The objects have different lifetimes, however, and it is the User object which offers the longest lifetime (alive while a user is logged into the system). This lifetime allows data to persist between pages and Portlets which offers significant functionality for data passing.

The original object that we began trying to pass data through was the PortletSession object. Our initial assumption was that this Portlet session acted as a session object would, carrying data between Portlets. It was discovered, however, that the lifetime of this object was the same as the lifetime of the Portlet. So, when the Portlet was no longer being show in the current webpage, the data would expire. We then discovered the user object which functions as explained above, carrying data from Portlet to Portlet for the life of the user logged in. One caveat of this approach, however, is that if there is no user logged in, the User object does not exist. This mean that to pass data from Portlet to Portlet, a standard HTTP session must be used like on any other non-Portal based web application.

6.2 2–way Communication – Prototype Claims Page

1-way communication between Portlets only addresses some of the concerns of a Portal based software solution. In a Portal environment where there are vast amounts of dependant information, such as the jTIGRESS application, it must be possible to Portlets to offer 2-way communication back-and-forth and to multiple Portlets. To display such functionality, we have chosen a simple claims processing system. After entering a member ID in the Member page, a CSR can click on the Claims tab to display claim information about the user. This page appears as follows:

[image: image5.png]P =10 i

a %

Ele Edt View Favortes Toos el

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Ackess [€] htp129.21.207.9513051 wpsfmyportal{tfpl.codes].co{7_0_A.5f7_0_5H]_5.1_0_A{7_0_SH ERENE
T Porl Ao Eany pestlal Pl Eoarae |

[wessshere L2

[Claim searen [Comife =)

Enter 3 dlaim 1D

[——

13333 - A medical procedure

23233 - Another medical procedure

NI

Internet

[Epore

We have chosen to display a search style page, since this is what is currently in TIGRESS. The functionality of this search in our prototype is very limited, however, and it’s best to use the default results that are given when entering the page.

In this scenario we wish to update the Claim Info Portlet on the right with information about the claim that is clicked on in Claim Search. To do this, the same functionality as explained in the 1-way communication section above is used. After clicking on a claim in Claim Search, the id of the claim is sent to Claim Info:

[image: image6.png]=lolx|

Flo Edt View Favortes

Tools Help

| &

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Address [] itp129.21.207.951308 1 wpsfmyportal{Ltfa]_5.7_0_Af7_0_SH.cnclad]asa.prototype. Clamsearchictionl.cfé_0_LUj.ce,v] (£ G0 | Links >

[websstere L]

- iy Portal Adristration 7 £atry profle. 7 Log out 2]

e

hew Page

fssian Permizzions

[Celaim search

[Celaim tofe

=)

Enter 3 dlaim 1D

Search

> 11111 - A medical procedure, <

23233 - Another medical procedure

Claim 11111

Date: 2/14/04
Deseription: A medical procedure,

Next claim (#23233) >>

[Epore

Internet

NI

Notice that a link to the next claim is show at the bottom of the Claim Info page and a marker for the current claim (‘11111’) is used on the Claim Search page. To display communication between the Portlets, we wish for Claim Search to update the marker when the ‘Next claim’ link on Claim Info is clicked. This involves 2-way communication between Portlets. Claim Search must be configured both as an ActionListener (to send data to Claim Info) and as a MessageListener (to receive information from Claim Info). Claim Info will be configured the same way. Now information will be sent from the Claim Info to the Claim search to update the current claim market when the ‘Next claim’ is clicked:

[image: image7.png]=lolx|

Bl Edt Vew Favortes

Tools tielp

| &

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Address [] hitp129.21.207.951308 wpsfmyportal{Ltfa]_5.7_0_Af7_0_SH.cnclad]asa.prototype. Claminfohction.cle_o_LU.cef7_~] (€3 G0 | Links >

[websstere L]

e

- Wy Portal Adistation £ £at ry profle 7 Log out 2]
Mew Pas it Pace

fssian Permizzions

[Celaim search

) [claim 1nf

Enter 3 dlaim 1D

Search

13333 - A medical procedure

> 23233 - Another madical procedure <

Claim 23233

Date: 2/28/04
Desaription: Another medical procadure

2<Pravious daim (#1111

[Epore

Internet

NI

The following diagram describes 2-way communication between the Claim page Portlets:

[image: image8.emf]Claim Search

Portlet

(ActionListener,

MessageListener)

Claim Info Portlet

(ActionListener,

MessageListener)

Sends ID

Claim ID

Clicked

Sends Form Info.

Send New ID

‘Next claim’

Clicked

Sends Form Info.

6.3 3-way Communication – Claims Page (Iteration 3)

The claims page has been updated in iteration three to exhibit the communication of three Portlets passing data to each other. Using the functionality that we had in iteration two, we’ve added a third Portlet to detail claim check (payment) information. The results of which can be seen below.

[image: image9.png]BM WebSp 0so0 p =10 i

PT——— 3

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

ackess [€] htp129.21.207.951505 wpsimyportal/tfol.codcs] cof7_0_AL517_0_F3]_5.7_0_Af1_0_F9 ERENE

e~ PO e SRR 1y Portal Administration - Edit my profile ? Log out =]

EditPsge Assian Permizsions

8 claim info mE

Claim seareh

Enter 3 dlaim 1D S Claim 12345
Date: 1/3/04

> 12345 - A medical procedure. < Deseriptian: A medical procedure,

23456 - Another medical procedure Hext daim (#23436) >

Claim check mE
Check# 9999999 Total Check Amount $500.00

Payes:
Warne: John Smith
Addrass: 123 Some St Rachastar, NY 14623
Status: Cashed

NI

Internet

Here we see that by clicking on a claim in the Claim Search Portlet, both the Claim Info and Claim Check Portlet are updated. This functionality can be accomplished through two methods. The first involves sending a message to each Portlet separately. The second method involves broadcast a message to all Portlets on the page. Either can be used in this case but it is probably better to start a habit of separately sending message to each Portlet. This is because in a much larger application, such as jTIGRESS, many Portlets will be used on a page and only some of the will need to be updated when an action occurs (as opposed to all of the getting updated via the broadcast message method).

As mentioned befpre, when an action occurs in the Claim Search Portlet, both the Claim Info and Claim Check Portlet are updated. This is because the Claim Search Portlet sends the claim number to the Claim Info Portlet and the Claim Check Portlet. Each Portlet receives this message and looks up the claim in our data source, displaying its information on screen. Now, when the “Next Claim” is clicked on in the Claim Info Portlet, a message is sent to both the Claim Search and Claim Check Portlets telling them to update with a new claim number.

6.4 Summary of Inter-Portlet Communication

The functionality and methodology behind three way Portlets can be extended to n-way Portlets. Essentially there are four different types of Portlets:

· Ones that do not communicate with others at all.

· Source Portlets - Portlets that only send information to other Portlets (explicitly or by broadcast).

· Target Portlets – Portlets that only receive information and update themselves based on other Portlets.

· Source and Target Portlets – Portlets that both send and receive data.

Arranging these on in a Portal application allows data transfer capabilities between Portlets. In the end, the data transfer capabilities offered by Portal based applications are very similar to that of any other software application with one main concern.

This concern is server power. The messages and data sent between Portlets is done through the application server. This application server must be powerful enough to handle many of these transfers by hundreds of end users (CSR department employees, Claims department employees, external web users, etc.). Developers must also be concerned with this limitation as it affects how their applications are written. Developers must try to store the least amount of information as they can in the User object that was talked about above so as to not “clog” the server with data. If this consideration is not addressed, meaning the server hardware infrastructure and software applications are not efficiently designed, data transfer performance will be negatively affected. Please note that this performance degradation was not encountered by the team during the project, but we feel this issue should be further explored by the Excellus.

7 Implementing Family of Portlets

One of the benefits of a Portal based application solution is the ability to reuse functionality across users and Portlets. For example, two users of the jTIGRESS system, a CSR and a BlueCross BlueShield subscriber logging in from the web, are very different. The CSR will be able to view a information about the subscriber such as benefits information, claims information, a history of their calls, etc. while a web user will be able to view a limited amount of information about only their account, perhaps only their information or claim history. Instead of creating one set of Portlets for the CSR and a completely different set for the web user, the Portlets can be combined to leverage reuse.

This works by doing a simple check on who is currently logged into the system and what kind of authorization they have to view information. For testing purposes we have a CSR (which is logged in by using the proto/proto1 account) and a web user (which uses no account information). The CSR will see the following information after entering an ID (notice the dependant information is displayed):

[image: image10.png]=lolx|

Ele Edt View Favortes Toos el

| &

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Actiress [€] htpif1125.21.207.55:908 wpsimyportaltuefp.cmdjcs).cel7_0_A] 517 0_55]_s.70_A7_0_55

ECEEE

| vessoners U]
- e

s i Portal Admisaten 7 £dt oy profle T Log sut 2]
Mew age EditPage Asslan Parmisso

Wy Favoritas

[tember 1o

=)

Entar 3 member ID:

[[teokw

[tember infs

Member Information for Doe, Jane:

First Name: Jane
Middls Name: Mary
Lazt Nama: Dos.

Address

Strest: 6 House Rd.
City: Rochester

Sester nY
Zins 14620
Dependents
[elation —[start[End [ftatus [Birthday [Aou PCP Name (PGP Subprogram [Aitemata peP
ol [osssa12595 [o3/012005 subs request[psrzoisrs ee [iare ¥ Direct Conract Mad ot roung

[Epore [[[@meme 7

In our system, a web user will not be able to view information about other people on the subscriber’s plan:

[image: image11.png]=lolx|

P r——— 3

Qe - () - (%] 2] | e Scravortes @Prese €| - L 5B

aderess [tp/129.21,207.95:9081 wpslportalufpl_s.7_0_Af7_0_SS)cnlo.anfsprootype ember~] (£ G0

Links >

[vessoners L]
oo

[tember 1o

Entar 3 member ID:

[[teokw

S 1 forgot my password Signup 7 Log in 2]

[tember infs

Member Information for Doe, Jane:

First Name: Jane
Middls Name: Mary
Lazt Nama: Dos.

Address

Strest: 6 House Rd.
City: Rochester
State: Y

zip: 14623

Internet

[E70ene T

NI

Both users, the CSR and the web user, are using the same Portlets to display the information (Member ID and Member Info). The CSR is authorized to view the complete member information JSP while the web user is authorized to view the restricted member information JSP. This is accomplished by checking what type of user is logged into the system and then sending them to the appropriate page. In our case, a logged in user (CSR) will view the regular member information page while a user that is not logged in will view restricted information:

[image: image12.emf]MemberInfoView.jsp RestrictedInfoViewjsp

MemberInfoPortlet

If logged in (CSR)... If not logged in (Web User)...

Here common logic for both users will be placed in the Portlets themselves while user dependent information will be handled by the JSP. This relieves the developer of having to maintain separated common components to applications (such as TIGRESS and excellus.com applications).

It is important to note that division of content at the presentation layer does not require N JSPs for N users. Content files (JSPs, HTML, etc.) can be shared for groups of users. For example, CSR and Claims employees might be presented the same set of content files for a Portlet, while external web users will be presented a different set of content files.

For more information on other inheritance and user role implementation options, see the Personalization section which explains how to change the displayed content based on rules.
8 Personalization

8.1 High-Level Details
8.1.1 Introduction

WebSphere Personalization is a presentation layer product, meaning, the presentation of the Web site can be modified based on the requirements of the site. Personalization is geared towards targeting Web content and applications to specific users. Personalization techniques are targeted towards applications such as personalizing news feeds, recommending documents, providing advice, targeting e-mail, targeting advertising, and promoting products. This can be accomplished in different ways.

All personalization solutions involve three main components, which combine to produce the overall personalized presentation.

[image: image13]
· User Profile

The user profile contains information regarding users of the site, including user attributes. An external LDAP may be used to store user profile information.

· Content Model

The content model contains attributes describing the content, such as product descriptions and articles.

· Matching Technology

Matching technology refers to a technique, which allows the matching of users to the correct content. For example, techniques used could involve filtering, rules, recommendation engines, or a combination of these.

Personalization is accomplished in different ways as mentioned above. There exist three main personalization types:

· User profile-based

User profile-based personalization is also sometimes referred to as simple filtering. Simple filtering displays content based on predefined groups or user profiles. For example, users registering for a Portal may automatically be assigned to a specified group, which is different from the group to which internal users belong. The same Portal then can be used to display content based on the user’s credentials. The Portal may also offer content based on input from the user, who has selected a certain preference for the Portlet.

· Rules-based

Rules-based personalization allows business users to define rules based on a user’s needs and preferences, or based on a set of business requirements.

· Collaborative filtering

Collaborative filtering allows information to be displayed based on a combination of individual preferences and similar usage patterns. Collaborative filtering technology utilizes statistical modeling to extract trends about usage patterns of Web site visitors.

The aforementioned personalization types can be leveraged to modify the content displayed to different users and user groups. The content differences may manifest themselves within a Portal or within a Portlet. Essentially this means that the content of a Portal can be controlled to contain different Portlets based on these personalization types or the Portlet itself can be controlled to display different content. The flexibility of this scheme may also lend itself to confusion when selecting which personalization technology to use. It is therefore imperative that time is spent in defining business requirements and target audience so that these needs can be mapped to the proper personalization type and technology. In other words, it is necessary to create a rational personalization architecture. After completing this step user and content models should be developed.

8.1.2 Selecting a Personalization Technology

The user and content models need to identify what profile information is needed to classify site visitors and what content categories are required to achieve the targeted objectives. Next you need to choose a personalization technology. User profile and rules based personalization are easy to implement and apply to most Web sites. These steps are required in order to understand the relationship between the content, content management systems, and Portals. This understanding will help select products, which complement each other. Essentially, it is important to keep in mind that personalization can be achieved in many ways and in order to avoid confusion, the previously mentioned relationship and types must be understood. Since this is crucial we should define each element of the relationship.

Content

Content refers simply to the information displayed within a Web site. IBM recommends using content wizards in WebSphere Studio to interface with content.

Content also includes user profile information. The IBM SecureWay Directory product provides an industry-standard directory implementation using the Lightweight Directory Access Protocol (LDAP).

Content Management

Content management provides methods for preparing, storing, and displaying content on the Web site.

Portals

Portals essentially are comprised of content.
8.1.3 Summary

Personalization offers a flexible and powerful interface for controlling the content displayed on a Web site. With personalization we are capable of limiting/granting content to individuals or groups of users. Through this mechanism, we are also capable of controlling the content on a per page or per Portlet basis, meaning individual Portlets may be controlled through personalization or an entire page may be affected by one or more rules. It is this level of flexibility and micro-management that makes personalization so powerful and valuable.

Rules-based personalization is geared more towards providing a solution for groups of users or even individual users. When attempting to restrict use based on common functionality or access privileges rules-based personalization is the logical solution. Consider a business, which requires different internal organizations to possess common customer information while at the same time restricting the level of detail pertaining to the individual customer. Rules-based personalization would allow a business user to define a set of rules, which restrict one organization from viewing certain levels of information pertaining to their respective organizations, while sharing, for example, unclassified customer information. Essentially, rules-based personalization will allow specified pages and/or Portlets to restrict the content displayed only to the desired users or groups.

User-profile personalization is geared more towards individual users and their preferences for using a given Web site. This type of personalization is generally more useful for external Web sites where the emphasis is on the user’s preferences and their overall Web experience.
Considering the aforementioned examples, it is believed that rules-based personalization will be the best fit for the needs of Excellus and therefore the following “Personalization Technical Details,” section will focus only this personalization type.
8.1.4 Considerations
There are several considerations for Excellus when integrating WebSphere Personalization. Since, Excellus uses a non-relational data store (Mainframe database) the Personalization resource classes must be implemented. These resource classes would have been generated automatically if a relational data store was used.

Another consideration stems from non-required LDAP fields not being available to the developer, which may be desired when implementing Personalization rules. An LDAP solution does not guarantee the availability of fields which may be required for the implementation of a Personalized Portlet solution.

8.2 Personalization Technical Details

The following figure displays the relationship between the different personalization components. The remaining portion of this section will focus on describing these components at a lower level of detail.

[image: image14.png]Rule Editor

> business user develops ruks Legend
¥ selection (pick cross-sel products) [] Base WebSphere |
 classicaton (user s V)

i 1 Personalization i
= o |
 rus are used n serviets, beans and :
Development EJBs eventually |

Figure 2.1 WebSphere Personalization components
8.2.1 Personalization Components

The components within the rules-based personalization solution consist of a development and runtime environment. The Personalization Server, which runs within WebSphere Application Server, is the runtime environment. There are two elements to the development environment, which are the Personalization wizards and workspace.

Personalization wizards

WebSphere Studio Application Developer provides personalization wizards which assist in the implementation of personalization-interface API if the user and content data reside within a relational database, LDAP directory, or in IBM Content Manager. If this data is not within one of these data stores, the API must be implemented. The Application Developer does however provide an environment to develop the necessary classes if needed. The development environment also offers wizards for creation of content spots, which are placeholders for content. Content spots get populated when a rule assigned to that spot is executed. Content spots are placed within JSPs and may be viewed as a placeholder for the rule.

Personalization Workspace

The Personalization workspace refers to a web-based user interface for managing rules and campaigns, according to the Personalization Redbook.

Campaigns are sets of business rules that work together to accomplish a business objective. For example, an HR manager may wish to run a campaign to encourage employees to enroll in a stock purchase plan. The HR manager would define a set of rules as shown to accomplish this business objective. Campaigns have start and stop dates and times and can be e-mail and web page based. Several campaigns can run simultaneously and they can be prioritized.

Campaigns therefore may be useful at Excellus for informing external users of new coverage plans, or changes to current coverage plans for specific subscribers. They could also be used in cases where customer representatives should be informed of new policies or packages, which are being offered. These campaigns are managed in a similarly as to the management of rules.

Through this web-based interface for rule-based management, it is possible to preview the affects of rules and campaigns on a given Website, before deploying the changes. The source of which drives the rules may come from user and content resource definitions; the date, day, time; servlets, or data stored in application objects. The actions performed based on these sets of rules are either selecting content from a data source (from one of the previously mentioned sources) or updating stored data.

An easy way of understanding these actions is to view them as either a read or write operation. Essentially, one or more of the selected data sources are read from, producing content for the site, or the user’s actions drive a write operation to data storage.

Rules can also be assigned to the content spots defined by the Personalization wizards.

Business Rules

There are three types of business rules. This section will provide a short explanation of each type followed by an example of the rules basic structure. The following examples were taken from the text of IBM WebSphere Portal Primer.

Classifiers

Classifiers are used for placing Website visitors into categories (groups if you prefer) based on their attributes stored in the data store. Classifying rules may also group users based on other attributes, such as the time, or from data gathered implicitly or explicitly. In the following example UserClearance is our classifier. UserClearance is set to Confidential when the Role attribute of a user is either equal to Manager or Executive. If the Role attribute for the user is neither of these, the classifier is then set to Regular.

	UserClearance is

	Confidential when

	current Personnel.ROLE is equal to Manager or

	current Personnel.ROLE is equal to Executive

	Otherwise Regular

Table 1.1 Example Classifier Business Rule

After reviewing this example the question may arise as to where Personnel, Manager, and Executive are defined? Since rules are created within the personalization web interface, these attributes must be known and available for them to be selected and used within a rule. This is accomplished by implementing the resource engine API. Personalization resources require the creation of Java classes, which conform to the WebSphere Personalization API. These classes are mapped to the data store being used. If the data store is a relational database or an LDAP directory, these classes can be automatically generated through the use of the User and Content wizards provided. Once these resources are created and published to the personalization runtime, they will be available for use within the rules web interface.

Actions

Actions are used for determining what data will be selected from or updated to the data store. If the action calls for data retrieval the information returned may also be sorted based upon the definition of an action rule. In the following example content which is marked as Confidential is selected and returned.

	Select Content

	Whose News.CONFIDENTIAL is equal to Y

Table 1.2 Example Action Business Rule

Bindings
Bindings essentially refer to rules, which combine classifiers and actions. They combine one or more classifiers with action rules in order to create one unique rule. Essentially these rules classify a user and based on that classification then perform an action or series of actions. In the following example the GetConfidentialNews action is performed if the user is classified as Confidential (either a Manager or Executive according to our previous example). This rule also executes the GetSiteNews rule always.

	When UserClearance is

	Confidential

	do GetConfidentialNews

	Always

	GetSiteNews

	order as is

	show all items

Table 1.3 Example Binding Business Rule

GetConfidentialNews and GetSiteNews are rules defined within the rules interface. Essentially, each of the examples shown would be provided with a unique name. The classifier example may be called GetConfidentialNews, our action rule would be called GetSiteNews, and our binding rule might be called GetNewsByClearance, which then may be used by a new rule as well.

This is the overall scheme for creating rules. Once these rules have been created and published, they must be placed within content spots in order to utilize them. So first the rules must be made and then they must be placed within content spot tags in a JSP.

Content spot wizards exist which help place rules within the spot. Once a content spot is created it may be added to a JSP.

9 Customization

9.1 Introduction:

WebSphere Portal 4.1.x introduced the concept of Pages that exist with Places. The user’s access rights determine the places that get displayed. Each place can contain one or more pages, and only users who have adequate viewing rights can see those pages. Pages can contain column containers, row containers, and Portlets. You can populate row or column containers with Portlets or other containers. Pages are displayed as tabs within a place.

The self-registration feature offers new users the ability to sign-up and “register” with the Portal. This functionality can be disabled in situations where self-registration is undesirable. For example, some organizations may prefer to control who signs up for their Portals. Essentially, providing the ability to enable or disable this feature allows more flexibility in design. There are many cases where, depending on the user group, this feature may be needed. For example, we may need to allow self-registration for external access to a company’s service or disable self-registration in cases where a similar service must be restricted based and only provided to, those who have been granted prior access. Self-registration, when enabled, works in the following manner:

· The sign-on form is presented to the user when the “Sign Up” icon is selected. The fields displayed in this form come from an LDAP directory and usually come from the inetOrgPerson Schema within the LDAP directory. The design is not restricted to this schema and others, such as ePerson or any other variation may be used.

· Of the 120 inetOrgPerson Schema fields, the most eight common fields are used by default. These fields may be replaced, relabeled, removed, or added to. Required fields may be set as well.

Administrators of WebSphere are granted a vast array of access rights. Administrators can delegate administrator privileges to other users. Any user who has administrator privileges can modify the content of some of the Portlets, depending on the abilities of the Portlet specified. The functionalities related to Portlet modification are maximize, minimize, help, edit, restore, and back.

The restore option will simply restore the Portlet to its default view. Functions such as edit and help must be implemented within the Portlet whereas the maximize, minimize, and restore functions are inherently provided to all Portlets. Any of these default options may be enabled or disabled to a user or set of users.

The administrator is also responsible for configuring the general layout of a Portal.

9.2 Layout:

Web pages in corporations generally require a consistent layout across the enterprise so that users become comfortable or rather familiar with the functionality of the site they are visiting. Enterprise layouts usually consist of a masthead, a main content area in the middle, a menu bar above the main area, and sometimes a navigation bar on the left. In WebSphere Portal, these areas must be laid out in terms of column containers, row containers, and Portlets. The following figure helps to visualize this concept:

Figure 2.1: An example WebSphere Portal page layout

An unauthenticated user cannot view or modify the page layout. The Portal administrator and if granted permission, registered users, can change the layout of pages. After the page is created, Portlets are chosen and added to the containers on the page. The default page layout consists of three columns, but is not restricted to this amount and may be configured from the general page layout control screens.

9.3 Themes and Skins:

As mentioned before, a place consists of one or more pages. Users may be restricted to certain places and pages depending on their credentials. Each place has an associated theme. Each theme then has an associated set of skins. Themes are used for defining the overall appearance of the pages displayed and skins are used for defining the appearance of a Portlet or group of Portlets. Themes and skins are installed independently from one another.

Themes

Themes allow a Website designer to provide an overall visual consistency and affect the navigational structure, banner, colors and fonts, available Portlet skins, and other visual elements. This is accomplished by creating JSP files, style sheets, and images. Every theme must define a default skin to associate with the Portlets displayed.

Skins

As previously mentioned, skins are used for defining the appearance of a Portlet. Since a place has an associated theme and themes define a set of available skins, each page may use one global skin for each Portlet displayed or a different skin for each Portlet. Skins affect the look of a Portlet by defining the frame around it. Skins generally are defined by a set of JSP files.

Aggregation Search Order

Themes and skins are sometimes created for various user groups, locations, and configurations. This is accomplished by supplying different style sheets, JSP files, and/or images for each of these previously mentioned categories. For example, we may wish to offer images, which contain Spanish text; support for Internet Explorer, Netscape, and Opera Web-browsers; or color schemes for those with disabilities. In order to find these different flavors of a theme or skin WebSphere searches the directory structure, starting with the most specific subdirectory. The search continues to propagate to the next highest directory until either a correct resource is found for the client or the highest directory is reached, in which case the default theme and/or skin is used.

The following table displays the associated directories for themes and skins:

	/themes Folder

	1. /<locale_country>

	2. /<locale >

	3. /<client>

	4. /<theme_name>

	5. /<markup>

	/skins Folder

	1. /<locale_country>

	2. /<locale >

	3. /<client>

	4. /<skin_name>

	5. /<markup>

Table 2.1 Directory Search Order

Now that we have stated the search order for the resource files pertaining to theme and skins, we can develop complete look and feel environments for a vast array of user environments.

Now for an illustration we will walk through the aggregation search order while assuming that the file “Control.jsp” was requested. Assuming also that the request comes from a client using Internet Explorer 5 (ie5) with the locale set to en_US and the skin set to Pinstripe. Portal server’s aggregator will search in the following order, starting at level 1:

[/skins directory]/[markup]/[skin name]/[client]/[locale]

1. /skins/html/Pinstripe/ie5/en_US/Control.jsp

2. /skins/html/Pinstripe/ie5/en/Control.jsp

3. /skins/html/Pinstripe/ie5//Control.jsp

4. /skins/html/Pinstripe/en_US/Control.jsp

5. /skins/html/Pinstripe/en/Control.jsp

6. /skins/html/Pinstripe/Control.jsp

7. /skins/html/ie5/en_US/Control.jsp

8. /skins/html/ie5/en/Control.jsp

9. /skins/html/ie5/Control.jsp

10. /skins/html/en_US/Control.jsp

11. /skins/html/en/Control.jsp

12. /skins/html/Control.jsp

13. /skins/Control.jsp

It is not important whether the directories exist if there are no files for that environment. For example, if one does not wish to support Internet Explorer 5 specifically, the folder “ie5” need not exist.

9.4 Portlet User Interface Limitations

When developing Portlet solutions it is important to keep in mind that developers are limited to HTML and Applet solutions for graphical user interface content. Java Swing and AWT toolkits are not supported within Portlet solutions.

There are however IBM extensions which provide functionality such as pop-up menus within Portlets and therefore there may exist other solutions which mimic similar Java graphical user interface functionality.

Note:
After completing this document it has been discovered that IBM no longer markets IBM Personalization Server and that the functionality of Personalization Server has been moved into what is known as the WebSphere Portal Content Publisher (WPCP).

Our research shows that the concepts presented within this document regarding personalization are identical under WPCP, but it is unknown at this time if this holds true for all of the information presented in the aforementioned Redbook and Portal Primer reference book.

Also, at this time it is unknown if WPCP is only supported in the WebSphere Portal Extend version and up or if WebSphere Portal Express supports WPCP and simply lacks an installation wizard. This should not be an issue though since Express is marketed as a small to medium size business solution.

10 Single Sign-On (SSO)
10.1 Summary

The requirement of SSO is simply that once a user has logged-in to a Portal application, he or she should not be challenged again by logging in to access other applications. Excellus would find this useful in that customer service representatives (CSRs) should not be bothered with the necessity to sign on to multiple back end applications. This would be time consuming and a nuisance. SSO in Portal Server has 2 levels. First, the credential vault service encapsulates the functionality of SSO for the Portlet writer in an object provided by the service. Second, the Portlet writer has to utilize the SSO functions and manage their own connections and authentication to the back end applications.

WebSphere provides 2 models of authentication, Web SSO and Extended. Web SSO allows a user to log-in to one application, the application then generates a token with the aid of some LTPA authentication proxy. This seems to follow the centralized authentication model (once you are authenticated to the first application you are authenticated to them all). Unfortunately, this requires modifying applications that do not follow this model already.

Extended SSO is where the credentials for users to access different systems are stored in the credential vault. Once the user is logged into the Portlet, the Portlet can then retrieve credentials from the vault that are necessary to access the back end application. The credential vault can store credentials that are secret at the individual Portlet level, shared among different Portlets for a single user, or shared across all users. The sharing across all users would be system level authentication rather than user level authentication. Setting this up is a complex task that involves possibly modifying the applications which require SSO access.

Extended SSO is most likely the preferable solution for Excellus. This is because the applications need not be in the same security domain. As we have come to understand there are applications that may be running in different cities that may need to be accessed and these applications would be in an entirely different security domain. If the security model is set up properly there could be elimination of redundant credentials floating around for users to different applications. The necessary credentials for the user can be in one location to access the Portlets. From then on, system credentials can be used to reach the appropriate back end applications. This would require the restriction of certain users from certain Portlets if they were not allowed to view the returning data from the back end application.

The following is a sections offer a summation of the 100-page Redbook document and 25 pages from the IBM WebSphere Portal Primer book on IBM WebSphere SSO capabilities and limitations. It will give insight to other methods of SSO and the shortcomings of each.
10.2 Design considerations

There are some characteristics of the applications that require authentication that will affect the solution of choice:

1. Does the existing application let the application server do the authorization? If not, a proxy solution may be required.

2. When incorporating an existing application with its own security model into a larger security domain, deactivate the application's security mechanism, if possible, and defer authentication and authorization to the larger secure domain. See Credential Vault.

3. If the application requires a form-based login, there may be no solution short of modifying the application or providing custom code to wrap the application and simulate the posting of the application's login form.

Web-tier SSO is appropriate for environments with no back-end systems and back-end systems that do not need authentication executed under the Web user’s identity. There are two key types of environments to consider: a homogeneous application server environment or a heterogeneous environment (multiple vendors/versions of application servers).

Web SSO provides seamless access to multiple Web applications located in the same security domain. Web SSO patterns include a homogeneous application server and heterogeneous application servers. The Homogeneous Application Server pattern is where a single Web tier is used for SSO and all applications are implemented on the same application server. The Heterogeneous Application Servers pattern uses an authentication proxy to control SSO access to multiple application servers of various types. Excellus would more likely be interested in heterogeneous pattern. This is because of Excellus’ diversity of applications and hardware.
10.2.1 Web Single Sign-On pattern
This pattern provides seamless access to multiple Web applications located in the same security domain. This is the typical SSO scenario where a company wants a common authentication mechanism for a number of applications. User credential objects that can be validated by the other applications within the SSO domain can be generated either by (1) the applications themselves or (2) by using an authentication proxy. This establishes a trust between the applications.
10.2.2 Extended Single Sign-On pattern
This pattern provides SSO to back-end applications that are outside the security domain. It may not be possible for the applications in an SSO domain to share the same user credentials as in the Web SSO application pattern. WebSphere Portal provides a credential vault service where these back-end credentials can be stored in a credential vault and retrieved by Portlets to access the back-end application.
10.2.3 Credential Vault Design
The credential vault is broken into Vault Segments. Each Vault Segment is broken into Vault Slots. Each Vault Slot contains a Credential Object. There are 4 types of slots. These are system slot, administrative slot, shared slot, and private slot.

System Slot: stores system credentials where the secret is shared among all users and Portlets.

Administrative Slot: allows each user to store a secret for an administrative defined resource, like Lotus Notes.

Shared Slot: stores user credentials that are shared among all the user’s Portlets.

Private Slot: stores the user’s credentials that are not shared among Portlets.

[image: image15.jpg]Credential Vault

Administrator-Managed User-Managed

vausegmen | | vausegmen | ... Vault Segment

System Administrative Shared Private
Vaul Siot Vaul Siot Vault Siot Vault Siot
et Resource
Implementation [o Lotus Notes

UserlD | Password

10.3 Authentication Models

10.3.1 Homogeneous application servers

A homogenous application server is a Web tier environment where all applications are implemented on the same application server and can exploit that application server's security server for SSO functionality.
Pros:

· Simple, effective security model for applications built within the same application server environment.

Cons:

· Does not support applications outside the application server domain.
10.3.2 Heterogeneous application servers

A Web tier with multiple different vendor application servers can only implement SSO with the deployment of a separate security server. The external security server provides an authentication proxy that intercepts requests to map or transform user credentials into the appropriate credential format for that application server.

Pros:

· Provides a unified, secure authentication model.

· Supports multiple vendors/platforms.

Cons:

· Will require modification and migration to include existing applications.

· Can be difficult to model the separation or aggregation of authorization data across many applications.

· Requires that applications support an externally managed security proxy.

10.4 Extended SSO Runtime Patterns

Extended SSO Runtime patterns provide SSO to back-end applications. There are two such extended Runtime patterns: the Credential Propagation pattern and the Central Authorization Service pattern. Credential propagation can be further broken down into credential mapping and credential transformation. The central authorization service is the addition of the back-end application into the control of the security server.
10.4.1 Credential Propagation pattern

Extending the security context to back-end systems enables transactions initiated by the user at the back-end to not be refused. Credential propagation takes one of two approaches:

Credential mapping
The Web user identity is mapped to a user ID used to access the back-end system.

Credential transformation
The Web user identity is forwarded to the back-end system but is transformed in the format that system needs.
Pros:

· Allows for maximum flexibility and incorporation of non-compliant applications
Cons:

· Introduces complexities related to credential management

· Introduces requirements for additional error handling and transaction support at each application node
10.4.2 Central Authorization Service pattern

Another alternative for extending the security context to back-end systems is to allow the same security service that controls the Web tier to control the back-end applications. The security server provides the role-based authorization for controlling back-end resources. No credential mapping or transformation is required. The security context is preserved all the way through to the back-end system.
Pros:

· Simplifies user management across all applications

· Unifies user profile information and reduces redundancy
Cons:

· All applications have to support the chosen security proxy and may require complex modification and migration.
10.5 Approaches to Achieve SSO
It may be possible to modify the back-end applications so that they fall within the same security realm as the WebSphere Portal. Any Portlet can then present a user’s existing Portal credential and it will be honored by the back-end application. If the back-end application is outside of the Portal’s security realm, Portlets must be able to store and retrieve user credentials for the back-end application they need to access. For accessing applications outside the Portal’s security realm, the Portal Server provides a credential vault service that Portlets can use to store user ID and password (or other credential) information.
10.6 Extending the Security Realm
Options available for the creation of a security domain between multiple Web applications.
10.6.1 LTPA Authentication

WebSphere Application Server can provide single sign-on between itself and certain Web application servers by sharing Lightweight Third Party Authentication (LTPA) tokens. LTPA tokens contain user data, expiration time, and a digital signature that is signed with a private key of the authenticating user. They are stored as encrypted cookies. The key for decrypting the cookie is normally generated by WebSphere Application Server and shared with any back-end application servers. For example, a shared LTPA token will be used to provide single sign-on between WebSphere Portal and a back-end Lotus Domino Application Server. It is also possible to use LTPA to provide single sign-on between WebSphere Portal and other WebSphere Application Servers (that do not fall within the same WebSphere security realm as the application server used by WebSphere Portal).

It is important to note that IBM has developed the LTPA mechanism. While they have published the specification, it is generally only supported by IBM products. The wider computer security community has largely adopted Kerberos technology to provide the same functionality.
10.6.2 External Security Manager

You can use an external security manager to perform an authentication between the various Web applications in the SSO domain.
10.6.3 Credential vault

Due to their design and because of various security aspects, it is often not possible or not reasonable for back-end applications to relinquish control of their application security. Therefore, those back-end systems should still be able to use their own authentication and authorization mechanisms. To allow for this and still obtain single sign-on, the Portlet must present appropriate credentials to the back-end system. This, in turn, means that the Portlet requires some method to store and retrieve credentials. The Portlet can store credentials as user-specific Portlet data.

It is preferable that a secure, scalable service be implemented, with a primary requirement of ensuring the security of the stored credentials. Then, the Portlet uses calls to this service to store and retrieve credentials, as needed, without knowledge of the low-level implementation. Such a service is referred to as a credential vault.
10.6.4 Credential vault PortletService
WebSphere Portal offers a credential vault as a PortletService. The PortletService interface of the Portlet API enables Portlets to use pluggable services via dynamic discovery. The credential vault provides Portlets with a mechanism for mapping from a user identity to a credential, such as a secret. Therefore, Portlets do not need to store user credentials as part of the user-specific Portlet data.
10.7 SSO Prototype

By logging into the Credential Vault and setting up a shared slot with the necessary User ID and password, any given Portlet can access these credentials and use them to log-in to the appropriate back end application. This allows a logged in user the seamless entry into a backend application without having to log in to it manually. The intricacies of this fall in setting up the credential vault with the appropriate information and retrieving the correct credentials.

As we already know the vault is made up of several segments and each segment is made up of several slots. Each slot contains a credential. There is a small issue with this in that vault slots names are case sensitive. Therefore we can have a slot name (called slotId in the API) Test, test, TEST, etc that are all different. So if the administrator of the vault does not enter a correct (case sensitive correctness) slot name then the Portlet will be unable to retrieve the appropriate credentials and will not be able to access the backend application.

If this model is used it yields great advantages. These advantages come from the limited overhead of only needing one credential per application that needs to be accessed. This is opposed to one credential per user. If the Portlets are set up correctly with the appropriate permission levels based on the user log-in to the Portal and only allow access to the appropriate Portlets there then this shared environment will work. If we do not restrict the users’ access in the initial log in stage then this model will not work.

[image: image16.png]ortal osol plo =10 i

fe Edt Yew Fgores Tods e | &
Qe - () - (%] 2] | e Scravortes s €| 0 L 5B
Adefress [[€] htps/jrocheste-mrehy:9081 fwpsjmyportalfiutpy.crulcs{.ce/7_0_Al 5{7_0_5D] 5.7 _0_Af7_0_5D B ERE

T o O Sl Bo SS 1y Potal Admimstration £3t m profls 7 tog out 2]

Credentia Vault |
2557 portal User Interface

[B] Add = vault sement craste = parion i 3 sl o store cradentials

Qi Portiets [2] manage vault segments view or delsts a vault segment
& e [B] Add vaultsiot creste 3 siot n a vault sagmant, for storing credentials
e it croupe [B] Manage systam vault slots siew or dalate » system waul slt, o change

the cradantial for system shared slots
Resource Permiszins

User and Group Permissions

Credential vault

B cona setings
-~ o
@ vt tys

|
P

[[[[SJtocalintranet

[image: image17.png]=10 i

Ble Edt ew

Favorkes Tools _tielp

| &

Qe - () - (%] 2] | e Scravortes s €| 0 L 5B

Adress [] httpjirocheste-rrrehy:901 fwpsfmyportaLtip]_s.7_0_Af7_0_SD.celad arj 14991 1022).pm-1.cl6_0_30j.cef7_0 56/ =] £ Go | ks

[webssters L]

2557 portal User Interface
O rortes
&) necens

Users and Groups
Resource Permiszins
User and Group Permissions

Credential vault

B cona setings
-~ o
@ vt tys

PO e SR T 11 portal Administration. Edit my profile 7 Log out]

Credential vault NEE
Vault

Defautt 5]

Vault slots:

Delete Modify Shared Slot Vault Slot Name Vault Segment Name _Resource
c oo TesT ounaultsegment ouvault
c oo othervaultsiot Defaultadminsegment None
c oo oun ounaultsegment Nane
c oo ounvaultslot ounaultsegment ouvault
c oo predefined. redential TrustStore. Defaultadminsegment None

€ Not shared test Suvaule ounvault
Done

[Eore

I |
P

G voclrraret

The time involved in this came mostly from reading the API and realizing that a slotId was exactly the same as the slot name entered from the admin page. This was unintuitive. An assumption was made that the slotId was similar to an objectId that was created for it. The knowledge that the slot Id and name are the same came from traversing through the vault, vault segments, and slots associated with each and retrieving each slotId and reviewing them. After this was done the realization that the name and Id of the slot were identical. It is also necessary to NOT use code similar to:

String slotName = “Test”;

if(slotName.equalsIgnoreCase(slotId)){

…

}

We cannot use this code because of the above mentioned case sensitivity of the credential vault. This may or may not yield us the correct credential at any given time. The following code segment yielded the appropriate credentials assuming slotName is the name we gave the slot in the vault.

Iterator it = vaultService.getAccessibleSlots(PortletRequest);

while(it.hasNext()) {

CredentialSlotConfig config = (CredentialSlotConfig)it.next() ;

//searches for shared resource name

if(slotName.equals(config.getSlotId())){

slotId = config.getSlotId();

break;

}
}
if(slotId==null && bCreate){

slotId = createNewSlot(PortletRequest,slotName,false);

// create shared slot
}
The above code makes sure there is a slot in the vault that matches the expected name. If there isn’t one it will be created with no credentials attached. From here we get the credential from the slot.
UserPasswordPassiveCredential credential =

(UserPasswordPassiveCredential)vaultService.getCredential(slotId,

"UserPasswordPassive",new HashMap(),PortletRequest);
if(credential != null) {
userid.append(credential.getUserId());

password.append(String.valueOf(credential.getPassword()));

}

These are the credentials in the form of userId and password. The following Portlet shows the retrieval of the credentials from the vault for the Portlet.
11 LDAP Connectivity
11.1 Introduction

WebSphere Application Server security supports several different LDAP servers including, but not limited to IBM Directory Server, IBM Secure Way for IBM Directory Server, iPlanet Directory Server, MS Active Directory and Lotus Domino. Though it is expected that other LDAP servers that follow the LDAP specification would function, built in support is limited to these specific directory servers only. You can use any other directory server by using the custom directory type in the drop-down list and by filling in the filters required for that directory.

11.2 LDAP Configuration
WebSphere Application Server offers 2 different scenarios for a connecting to an LDAP. The first is a basic configuration and the second enables SSL for LDAP (LDAPS), providing security to WebSphere LDAP communication. It is recommended that a basic connection be established before setting up the security features.

11.2.1 Basic Connections

WebSphere can be configured to use LDAP through the application server’s administrative console. By navigating to the Security -> User Registries -> LDAP page the connection settings can be altered. Required settings for connection are server user ID and password, directory type and the host name. Advanced LDAP Settings, such as LDAP search settings, can also be accessed via the link at the bottom of the page. The settings on this advanced page will vary depending on the directory type from the main settings page. The changes made during LDAP configuration will require restarting the application server to be effective.

11.2.2 Connections with SSL

SSL can be configured by performing the required steps for a basic connection and then navigating to Security -> SSL in the application server’s administrative console and filling in the security settings which are required for the LDAP directory server. The Port, SSL Enabled and SSL Configuration fields of the Security -> User Registries -> LDAP page will also need to be modified for the SSL settings.

11.3 Testing LDAP Connections
When having difficulties configuring WebSphere to use an LDAP the first step to resolution is to isolate the problem by testing the LDAP connection. For testing try to connect to the LDAP server from the WebSphere machine, first with security turned off and then with security (LDAPS) turned on if it will be used.

An important LDAP design tip:
A WebSphere constraint that will affect the design of the LDAP schema is having a group that appears in multiple nodes of a directory tree. It's also not uncommon to have a different set of members of these two groups in the two different nodes in the directory.

While this is completely acceptable from an LDAP design standpoint, WebSphere has some restrictions on the existence of the same group in multiple nodes under the same Base Distinguished Name, or root node. Basically, WebSphere’s LDAP search halts after finding the first match of a particular group.

What this means is that users in the group that appears in another node would never be viewed as having valid roles in the system. You need to take this into consideration while designing the LDAP schema.
12 Learning Curve

12.1 Prerequisite Knowledge

12.1.1 Java and Object Oriented Programming (OOP)

Designing and creating Portlets requires the previous knowledge of, or a background in, Object Oriented design. Experience with the Java programming language will prove useful when transitioning to the Java 2 Platform, Enterprise Edition (J2EE), which defines standards for developing component-based multi-tier enterprise applications. Prior knowledge of OOP languages and OO concepts in general is necessary for creating J2EE applications.

12.1.2 Java 2 Platform, Enterprise Edition (J2EE)

· Java Database Connectivity (JDBC)
One benefit or strength of the Java programming language is the inherent portability attribute of all applications created in Java. The Java Database Connectivity (JDBC) Application Program Interface (API) maintains the platform-independent nature of Java by providing a common mechanism for connecting Java applications and databases. Essentially, JDBC allows a Java program to communicate with any database, given the proper database drive, without having to recompile the Java code. Without JDBC, programs would require platform-specific native database code and therefore would violate the Write Once, Run Anywhere motto.

Once the developer is possesses the required prerequisite knowledge, using the JDBC API is self-explanatory. The constructs of the API are the same as that of the Java API, which should limit the time required for JDBC comprehension and use.

· Enterprise JavaBeans (EJBs)

Enterprise JavaBeans, or EJBs, represent one of many methods available for accessing data from a database in enterprise applications. EJBs are an intrinsic component of the J2EE framework. EJBs support special types of JavaBeans, which are housed in a container within an Application Server.

The main bean types are Session beans and Entity beans. Session beans are used for interacting with the user. These beans handle requests from the user and either send back the requested information or pass the request on to another bean.

Entity beans are used for interacting with a specified database and are implemented in two different fashions. Container-Managed Persistence (CMP) and Bean-Managed Persistence (BMP) are both Entity beans, but represent separate methodologies for managing data persistence. With CMP the container in which the EJB is deployed is responsible for ensuring that data is persisted to the database. The BMP implementation places the responsibility upon the developer of the EJB, to ensure data is persisted.

Entity beans allow direct access to the data contained within the database, while extracting some of the details of JDBC. EJBs also allow the distribution and representation of business functionality and logic, respectively, on the server and can provide an object representation of persistent data.

· Java Server Pages (JSP)

Java Server Pages (JSP) provide dynamic, template-based, content generation for the presentation layer. JSP technology is an extension of the Java servlet technology. Though JSP pages are an extension of servlets, they are text-based documents, whereas servlets are pure Java programs. Essentially, servlets typically consist of HTML embedded within Java code, while JSP pages contain embedded Java in HTML.

The content of a JSP page consists of two parts. HTML or XML tags are used for static content generation within a JSP page. Scriptlets and JSP tags written in Java are then used to encapsulate the logic that generates the dynamic content.

JSP files are a combination of HTML and Java code. In order to create JSP pages effectively, prior knowledge of a markup language, such as HTML or XML, and Java is necessary.

· Application Server

The middle tier of an enterprise architecture serves the purpose of managing communication between user commands and queries sent from the client tier and sending these requests, via the JDBC API, to the database. When the database returns the results of the JDBC commands, they are sent through the application server, back to the client tier. Some application servers are also used as an EJB container.

12.1.3 Prerequisite Resources

Information and online tutorials regarding all prerequisites for Portlet development, are readily available at Sun Microsystems’ Java and J2EE Websites. For useful links to these sites please refer to the Reference Information section of this document.

12.2 Conceptual Understanding

The concepts of Portals and Portlets are built upon prerequisite J2EE knowledge. Portlets are J2EE applications; they use the same components such as Java Server Pages, Servlets, and JavaBeans to present some information to the user. These components along with a Portlet XML descriptor file are contained in a web application (.war) file and sent to a Portal application server for installation. The following diagram illustrates the flow of a Portlet application.

[image: image18.emf]XML

JSP

HTML

...

HTML

Portlet Application

Beans

Portlet (Servlet)

To database, files, ...

Application / Web Server

Portal

The key to understanding the difference between regular J2EE applications and Portlet applications is to understand the purpose of a Portal. The Portal is one large application, which contains several Portlets (for a larger definition see the Overview section above). We can think of Portlets as being represented as windows on a Webpage. This means the Portal server must have the knowledge of how to deal with these windows and the information they can send/receive. This includes knowledge of what page a Portlet is on, how it appears, what state it is in, what mode it is in, and what information is being sent to it from the client. The Portlet itself must also have knowledge of its functionality. By using the Portlet API, Portlet applications can be created and understood by the server. The following diagram illustrates the separation of components between a Portlet application and a Portal and how they communicate through APIs and the container.

[image: image19.png]dLH

TWXEI0A “THM “THLH

Portal
web Application

14V Jay0AuL Jaule3uod

1dS JapiA0Id JaulRu0D

Portlet/Servlet
Container

1dv 391210d

Portlet
(App)

Portlet
(App)

Portlet
(App)

In summary, Portlets are specialized J2EE applications, which serve the purpose of presenting “chunks” of information or functionality through a web-based interface. This is accomplished by building Portlets using the API and deploying to a Portal server which understands the API and its functions.

12.3 Required Resources

12.3.1 Staffing

The number of developers for a given project will vary depending on the project size and scope. In a given project each developer will be able to work on development of individual Portlets that can be integrated into the larger system. The Portlets for each Portal should be managed by one person to ensure a high quality integration of the Portlets.

Our project requirement was stated as four developers. The learning curve for the ability to integrate each individual’s Portlets into the larger system is yet to be determined since we have yet to build functioning Portlets with bi-directional communication.

12.3.2 Literature Availability

IBM documentation such as DeveloperWorks and Redbooks offer the best information resource. Other resources such as java.sun.com and javaworld.com are available for general JSR 168 knowledge. This literature is available freely and provides development guides, which will reduce the learning curve for development.

12.3.3 Software Requirements

Learning how to configure the different software applications to work together will vary depending on a person’s background. Our learning curve for this activity was relatively high since no team member had any prior experience setting up a distributed development environment. In hindsight the configurations were not hard, they did take significant staff-hours on our part consulting documentation. We feel that someone (WebSphere certified system administrator) with experience would have a better grasp of the installation and configuration process.

12.4 Development

12.4.1 Portlet Development

Portal toolkit provides the ability to edit the necessary Portlet files (Java, XML, HTML, and JSP) as well as package these files into archives which can be deployed to the Web. The layout of the interface is consistent with many popular IDEs. While there are many options that may not be familiar to the first time user, it is simple enough so that someone with nearly no knowledge of the interface can easily use it effectively. The toolkit increases speed of development of Portlets over hand-coded development. When creating a Portlet by hand it is required to know the location of every jar file used so source code can be compiled. Portal toolkit contains the location of all jar files required to compile a Portlet. The toolkit uses Eclipse as the IDE and has on the fly type checking which greatly increases productivity. The project navigator aids in development. This shows the hierarchy of the source files, classes, EAR files, xml files, and all other files. The Web Content portion of the Project Navigator is where the html and JSP files are located. The tool allows drag and drop ability for many different items. A limitation of the tool is the inability to view multiple source code windows simultaneously (split-screen). Development is hindered since this causes a need to toggle between windows, as opposed to viewing them simultaneously.

12.4.2 Portlet Deployment

The Portal administration console is very useful. It allows us to add Portlets to a Portal with the click of a few buttons. While this is a time consuming operation to install a Portlet and then add the Portlet to a specific page in the Portal, it is not very difficult. After reading a tutorial on Portlet deployment, the same process is repeated for all Portlet deployment. Adding the Portlet web archive (.war) is easy but setting access to the Portlet is not quite as straightforward. Once the Portlet is installed and added to a page, it is visible to the administrator but no one else. Figuring out the process to change the user settings on the Portlet and Portlet Application and the order in which it needs be done is not intuitive. Making a mistake part of the way through and fixing it is also not an easy task, as the process must be restarted from the beginning.

12.5 Metrics

12.5.1 Background Knowledge

Each of us started with different levels of understanding concerning Java, J2EE, HTML, XML, database design, and interface design. The team’s background knowledge is as follows:

Jon Ferry

· 3 years general Java knowledge

· 10 weeks education (J2EE technology)

· 10 weeks education (Portal technology from Phase 1)

· 9 months co-op

Jonathan Peffer

· 3 years general Java knowledge

· 10 weeks education (J2EE technology)

· 10 weeks education (Portal technology from Phase 1)

Greg McGraw

· 2 years general Java knowledge

· 10 weeks education (J2EE technology)

· 10 weeks education (Portal technology from Phase 1)

Chris Helmeset

· 3 years general Java knowledge

· 5 weeks education (J2EE technology)

· 10 weeks education (Portal technology from Phase 1)

We suggest that Excellus employees developing the Portal solution of jTIGRESS familiarize themselves with the following technologies: Java, J2EE, WebSphere Developer and Toolkit, XML, Portlet concepts, CSS, HTML.

12.5.2 Phase 2 Metrics
Given the aforementioned background knowledge, it took the team 162 hours to research the technologies which fulfilled the project’s objectives. These hours have been broken down by objectives in the following table:

	Task
	Time to Research and Develop

	Inter Portlet communication
	48

	SSO
	46

	Personalization
	33

	Customization
	23

	LDAP
	12

Table 12.5.2.1 Time to Research and Develop Technologies

In addition, once the initial technology research and development of the objectives has been completed, the time to re-develop a similar prototype is as follows:

	Task
	Time to Re-develop

	Inter Portlet communication
	16

	SSO
	7

Table 12.5.2.2 Time to Re-develop technologies

13 Tutorials

13.1 Basic Portlet Creation with Intercommunication Capabilities

13.1.1 Creating Portlets using WebSphere Application Developer 5.1

1. Start IBM WebSphere Application Developer

2. Select, File → New → Portlet Development → Portlet Application Project → Next

3. Provide a project name within the “Project name” text field

4. Select the “Create basic Portlet” radio button, if not already selected

5. Select the “Configure advanced options” checkbox and click next

6. Select “J2EE Level 1.3 / WebSphere Portal 5.0” and click next

7. Select next on the Portal Settings dialog

8. Select the “Add message listener” checkbox

a. this will provide the implemented action listeners needed

9. Select the “Add message sender sample” checkbox

a. this will also provide the implemented message listeners needed

10. Select “Finish”

11. Switch to the “Portlet Perspective”, this can be accomplished by the following ways

a. If prompted to switch to the Portlet Perspective select “Yes”

b. If the Portlet Perspective icon is available on the left-hand tool bar select the Portlet Perspective icon

c. If the Portlet Perspective icon is not available select Window → Open Perspective → Portlet
The following items will be generated after completing the aforementioned steps:

· 2 JSP pages for viewing (one for the receiver and one for the sender)
· 4 Java files (2 for bean information and 2 for the Portlet information)
· 2 XML files (Portlet.xml and web.xml)
· The Enterprise Archive, which is known as an EAR file (application.xml).
In its present form, this Portlet will only broadcast a message. The receiving Portlet must now be modified in order to respond to the received message. In order to demonstrate this functionality, the received message will be displayed within this Portlet. To accomplish this we need to add the following to our Portlet code, where the italicized text represents the added code:

public void messageReceived(MessageEvent event) throws PortletException {
 if(getPortletLog().isDebugEnabled())
getPortletLog().debug("MessageListener - messageReceived called");
 // MessageEvent handler

 PortletMessage msg = event.getMessage();

 // Add PortletMessage handler here

 if(msg instanceof DefaultPortletMessage) {
String messageText = ((DefaultPortletMessage)msg).getMessage();
// Added Code

CommPortletSessionBean sessionBean = getSessionBean(event.getRequest()); sessionBean.setFormText(messageText);

// End of Added Code

 }

 else {

 // Add general PortletMessage handler here

 }
}

CommPortletSessionBean, is the name of the Java Bean file created earlier and the event object represents the message-received event. We then display the received message in the Portlet’s form text by using the sessionBean.setFormText() method. Essentially, this displays the sent message within the receiving Portlet’s form.

The final step necessary before deploying the newly created Portlet is to export the Portlet to a WAR file. This is accomplished by selecting File → Export → WAR file → Next. Now, simply select the appropriate project, desired location to save the War file, and select “Finish”. Congratulations, you have now successfully created a Java Portlet and are properly prepared for deployment.

13.1.2 Creating Portlets Manually (The Hard Way)

Step by step approach to creating a Portlet:

[image: image20.emf]Steps Sample location Name

create java file helloWorld/com/ibm/portlets/sample/ HelloWorld.java

create batch file to compile it helloWorld hello.bat

create the jar file helloWorld hellojar.bat

create web.xml and portlet.xml helloWorld/web-inf/

create the war file helloWorld/web-inf/ hellowar.bat

The following explains some issues that may arise while creating and deploying your Portlet.

Numerous Jar files are required in order to create Portlets. These include:

· j2ee.jar

· WebSphere.jar

· wpsPortlets.jar

· wps.jar

· Portlet-api.jar.
In addition there must be some reference to the Application Server’s Java JDK. Sample batch files have been created with comments. They can be found within the helloWorld directory. The following files pertain to the aforementioned batch files:

· hello.bat

· hellojar.bat

· hellowar.bat.

The most common source of errors when installing a Portlet generally can be traced back to the XML files created (ensure the names are properly defined). The page you are working on becomes DEACTIVATED; remember to ACTIVATE it when you are finished. All should be well after reactivation.
Now we must address other issues, which may arise when defining certain XML properties. If you are using the <context-param> in the web.xml file, it should be noted that these are static configuration parameters that cannot change after installing the WAR file. These must be updated inside the WAR file.
The Concrete Portlet Configuration Parameter, ConcretePortletConfigParam, and Concrete Portlet Application Context Parameter, ConcretePortletApplicationContextParam, are defined in Portlet.xml. These parameters may be modified after installing the WAR file, if required. These parameters can be accessed from any Portlet mode, however, you can only modify them in the Portlet configure mode. The Portal Administration page allows the modification of these parameters.
Another good reference is ftp://ftp.software.ibm.com/software/webserver/Portal/V41PortletDevelopmentGuide.pdf
13.2 Deploying Portlets using WebSphere Application Developer 5.1

After creating a WAR file, it must be deployed. The following steps will guide you through this process and should take approximately 8 minutes.
1. Log in to the administrator page (for our purposes this is http://rocheste-rmrehy:9081/wps/Portal/!ut/p/.scr/Login)

2. Now select “Administration” (top right)

3. Now select “Portlets” (middle left)

4. Select “Install”

5. Select “Browse” and choose the desired WAR file

6. Select next → Select Install

7. Select “Access”

8. Select “User and Group Permissions”

9. Select “Users”

10. Select the Pencil icon [image: image21.png]

 (Resource Type), for the “anonymous Portal user”
11. Select “Portlet Applications”

12. Search for your application

13. Select the Key icon [image: image22.png]

 (Assign Access), for your application

14. Check User → Click OK

15. Return to the “Resource Types” selection page by clicking “Done”.

16. Select “Portlet”

17. Search for your application

18. Select the Key icon [image: image23.png]

 (Assign Access), for your application

19. Check User → Click OK

Note: There were 2 Portlets created so we cannot forget about the second else it will not be accessible.

20. Repeat 11 – 19 for the other Portlet created i.e. test and test (message sender)

21. Select Done → Done → Done

22. Now select “User Groups”

23. Select the Pencil icon [image: image24.png]

 (Resource Type), for the “all Portlet user groups” group

24. Select “Portlet Applications”

25. Search for your Portlet
26. Select the Key icon [image: image25.png]

 (Assign Access), for your application

27. Check User → Click OK

28. Return to the “Resource Types” selection page by clicking “Done”.

29. Select “Portlet”

30. Search for your application

31. Select the Key icon [image: image26.png]

 (Assign Access), for your application

32. Check User → Click OK

Note: There were 2 Portlets created so we cannot forget about the second else it will not be accessible.

33. Repeat 24 – 32 for the other Portlet you created i.e. test and test (message sender)

34. Select Done → Done → Done

In addition we need to add the Portlets to a Portal page
1. Select “Portal User Interface”

2. Select “Manage Pages”

3. There are two options now

a. Navigate to the page where the Portal should be added

b. Create a “New Page”

i. Provide a title for the page

ii. Select a theme for the page

4. Select Pencil icon [image: image27.png]

 (Edit page layout)

5. Select “Add Portlets” in the desired location

6. Select the Portlets that are to be added

7. Select “OK”

8. Select “Done”

Appendix A: Reference Information

Installation:

WebSphere Portal Server:

http://www-106.ibm.com/developerworks/subscription/descfiles/components/waspe503.htm
Download index.html for documentation.

NOTE: An IBM Developerworks subscription is required for this download.
WebSphere Application Server:

This will be installed with WebSphere Portal Server. See documentation above.

WebSphere Studio Application Developer:

http://www-106.ibm.com/developerworks/subscription/descfiles/components/adw51101.htm
Download install.html for documentation.
NOTE: An IBM Developerworks subscription is required for this download.

WebSphere Portal Toolkit:

http://www-306.ibm.com/software/info1/WebSphere/index.jsp?tab=products/Portaltoolkit
JSR 168:
Service Request Information:

http://www.jcp.org/en/jsr/detail?id=168
Guide:

http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-Portlet.html
http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-Portlet2.html
J2EE Information:

http://java.sun.com/developer/codesamples/index.html#j2ee
http://java.sun.com/developer/onlineTraining/J2EE/Intro/
General WebSphere Information:

IBM WebSphere Portal Primer http://www.redbooks.ibm.com/redpapers/pdfs/redp3743.pdf
http://www7b.software.ibm.com/wsdd/library/techarticles/0211_konduru/konduru.html
General WebSphere Information:

Iyengar, Ashok and Gadepalli, Venkata. IBM WebSphere Portal Primer p. 293 - 316

WebSphere Portlet Information:

ftp://207.25.253.53/1/wsdd/pdf/V42PortletDevelopmentGuide.pdf
(Or search IBM.com for “Portlet Development Guide”)

http://www7b.boulder.ibm.com/vadd-bin/ftpdl?1/vadc/wsdd/pdf/PortletCodingGuidelines.pdf
(Or search IBM.com for “Portlet Coding Guidelines”)

WebSphere Portal Development Tutorials:

http://www-106.ibm.com/developerworks/ibm/library/i-metro.html
(Or search IBM.com for “Metrosphere”)

Portlet Intercommunication:

http://www-106.ibm.com/developerworks/WebSphere/library/techarticles/0207_roychowdhury/0207_roychowdhury.html
(Or search IBM.com for “On-the-glass”)
Single Sign-On:

Galic, Halliday, Hatzikyriacos, Munaro, Parepalli, Yang, Gargaro, Rehn, Ng “A Secure Portal Extended With Single Sign-On” http://www.redbooks.ibm.com/redpapers/pdfs/redp3743.pdf February 2004

LDAP:
Kovari, Carpenter, Creswick, Kisielewicz, Langley, Leigh, Maheshwar, Pipes “IBM WebSphere V5.0 Security WebSphere Handbook Series” http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246573.html?Open December 2002

Mitra “Using LDAP to Secure J2EE Applications in WebSphere Studio Application Developer V5” http://www-106.ibm.com/developerworks/websphere/library/techarticles/0311_mitra/mitra.html?ca=dgr-lnxw25SecureLDAP November 2003

Personalization:

The following articles provide an overview of personalization, while following an example implementation. Part two of the series introduces the merger of the Personalization product into the Content Publisher solution. This article outlines some of the changes, which were made from version 4.1 to 4.2. Reading these articles should provide the reader with a better understanding of what personalization does, how it works, and how it has changed throughout the revision history. Since the earlier versions seem to describe Personalization at a conceptual level, it is recommended that these articles not be overlooked.

· Article 1:

http://www-106.ibm.com/developerworks/websphere/techjournal/0210_olson/olson.html
· Article 2:

http://www-106.ibm.com/developerworks/websphere/techjournal/0306_olson/olson.html
· Article 3:
Please note the decision to store groups within session objects and the considerations, which went into this decision. Storing information, that is unlikely to change during a session, into session objects will greatly reduce the load on a data store. For example, there is no need to retrieve the user group of an individual for each portlet, which may require this information to process a rule. Storing this information in a session object would eliminate the need for retrieving this information more than once.

http://www-106.ibm.com/developerworks/websphere/techjournal/0307_olson/olson.html
Performance:
Caching:

· Static and dynamic caching in WebSphere Application Server V5

Provides an introduction to caching in the WebSphere environment, while portraying the advantages of such technologies.

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_hines/0405_hines.html
Performance Goals Example:

· Lessons learned migrating IBM's intranet to WebSphere Portal

This section highlights some of the goals for performance, which IBM wished to meet with their new Portal intranet. This link provides information pertaining to how IBM investigated several performance issues to reach their goal.
· Develop and test for optimal performance, section

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_thompson/0405_thompson.html - sec6
General:

The top 10 (more or less) J2EE best practices:

Provides an interesting overview of the top ten best practices of J2EE application development, from an IBM WebSphere point-of-view.

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
Personalized Presentation

Content attributes

User Profile

Matching Technology

Portlet 4

Portlet 3

Portlet 2

Portlet 1

Column Container 2

Column Container 1

Row Container

Copyright © 2004 Kangaroo Software

_1143195526.vsd
Member ID Portlet (ActionListener)�

Member Info Portlet (MessageListener)�

Sends ID�

�Lookup� Pressed�

Sends Form Info.�

_1143197954.vsd
MemberInfoView.jsp�

RestrictedInfoViewjsp�

MemberInfoPortlet�

If logged in (CSR)...�

If not logged in (Web User)...�

_1144435576

_1143196607.vsd
Claim Search Portlet (ActionListener, MessageListener)�

Claim Info Portlet (ActionListener, MessageListener)�

Sends ID�

Claim ID Clicked�

Sends Form Info.�

Send New ID�

�Next claim� Clicked�

Sends Form Info.�

_1138283320.vsd
�

Server�

Workstations�

�

�

�

�

�

�

Data�

Websphere Application Server
Webspere Portal Server�

Websphere Studio Application Developer
Websphere Portal Toolkit�

Database(s)�

LDAP�

Accesses�

Accesses�

Deployment�

_1138283600.vsd
��

�

�

��

�

��

�

�

��

�

�

Server�

�

�

XML�

JSP�

HTML�

...�

HTML�

Portlet Application�

�

Beans�

Portlet (Servlet)�

�

To database, files, ...�

Application / Web Server�

Portal�

_1138033594.xls
Sheet1

		Steps		Sample location		Name

		create java file		helloWorld/com/ibm/portlets/sample/		HelloWorld.java

		create batch file to compile it		helloWorld		hello.bat

		create the jar file		helloWorld		hellojar.bat

		create web.xml and portlet.xml		helloWorld/web-inf/

		create the war file		helloWorld/web-inf/		hellowar.bat

Sheet2

		

Sheet3

		

